国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版

包郵 智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版

作者:劉輝等著
出版社:中南大學出版社出版時間:2022-03-01
開本: 26cm 頁數: 272頁
本類榜單:工業技術銷量榜
中 圖 價:¥100.8(6.0折) 定價  ¥168.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 版權信息

智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 內容簡介

智慧地鐵專注于鐵路系統的新概念和新模式,是數據科學與工程的跨學科研究。智慧地鐵車站系統基于車站中的全息感知,終端平臺控制和高度自治的操作。它提供實時的自主服務和車站服務設施的監控以實現車站設備、環境和乘客的智能管理。智慧地鐵是一個新興的領域。本書介紹智慧地鐵車站系統中數據科學和工程學的關鍵技術,并將其分為三個部分,包括環境、人類和能源。本書介紹智慧地鐵車站系統中數據科學和工程學的*新技術。。本書可以為研究人員提供重要參考,并鼓勵以后在智慧地鐵、智能鐵路、數據科學與工程、人工智能和其他相關領域進行后續研究。本書與愛思唯爾聯合出版。

智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 目錄

Chapter 1 Exordium
1.1 Overview of data science and engineering
1.2 Framework of smart metro station systems
1.3 Human and smart metro station systems
1.4 Environment and smart metro station systems
1.5 Energy and smart metro station systems
1.6 Scope of this book
References
Chapter 2 Metro traffic flow monitoring and passenger guidance
2.1 Introduction
2.2 Description of metro traffic flow data
2.3 Prediction of metro traffic flow based on Elman neural network
2.4 Prediction of metro traffic flow based on deep echo state network
2.5 Passenger guidance strategy based on prediction results
2.6 Conclusions
References
Chapter 3 Individual behavior analysis and trajectory prediction
3.1 Introduction
3.2 Description of individual GPS data
3.3 Preprocessing of individual GPS data
3.4 Prediction of GPS trajectory based on optimized extreme learning machine
3.5 Prediction of GPS trajectory based on optimized support vector machine
3.6 Analysis of individual behavior based on prediction results
3.7 Conclusions
References
Chapter 4 Clustering and anomaly detection of crowd hotspot regions
4.1 Introduction
4.2 Description of crowd GPS data
4.3 Preprocessing of crowd GPS data
4.4 Clustering of crowd hotspot regions based on K-means
4.5 Clustering of crowd hotspot regions based on DBSCAN
4.6 Anomaly detection of crowd hotspot regions based on Markov chain
4.7 Conclusions
References
Chapter 5 Monitoring and deterministic prediction of station humidity
5.1 Introduction
5.2 Description of station humidity data
5.3 Deterministic prediction of station humidity based on optimization ensemble
5.4 Deterministic prediction of station humidity based on stacking ensemble
5.5 Evaluation of deterministic prediction results
5.6 Conclusions
References
Chapter 6 Monitoring and probabilistic prediction of station temperature
6.1 Introduction
6.2 Description of station temperature data
6.3 Interval prediction of station temperature based on quantile regression
6.4 Interval prediction of station temperature based on kernel density estimation
6.5 Evaluation of probabilistic prediction results
6.6 Conclusions
References
Chapter 7 Monitoring and spatial prediction of multi-dimensional air pollutants
7.1 Introduction
7.2 Description of multi-dimensional air pollutants data
7.3 Dimensionality reduction of multi-dimensional air pollutants data
7.4 Spatial prediction of air pollutants based on Long Short-Term Memory
7.5 Evaluation of spatial prediction results
7.6 Conclusions
References
Chapter 8 Time series feature extraction and analysis of metro load
8.1 Introduction
8.2 Description of metro load data
8.3 Feature extraction of metro load based on statistical methods
8.4 Feature extraction of metro load based on transform methods
8.5 Feature extraction of metro load based on model
8.6 Conclusions
References
Chapter 9 Characteristic and correlation analysis of metro load
9.1 Introduction
9.2 The theoretical basis of correlation analysis
9.3 Description of metro load data
9.4 Correlation analysis of metro load and environment data
9.5 Correlation analysis of metro load and operation data
9.6 Comprehensive correlation ranking of metro load and related data
9.7 Conclusions
References
Chapter 10 Metro load prediction and intelligent ventilation control
10.1 Introduction
10.2 Description of short-term and long-term metro load data
10.3 Short-term prediction of metro load data based on ANFIS model
10.4 Long-term prediction of metro load data based on SARIMA model
10.5 Performance evaluation of prediction results
10.6 Intelligent ventilation control based on prediction results
10.7 Conclusions
References
展開全部

智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 作者簡介

劉輝,現任中南大學二級教授、博導、交通院副院長。 主要研究方向為軌道交通與人工智能。獲中德雙博士學位(交通運輸工程/自動化工程)、德國教授文憑。入選國家萬人計劃青年拔尖人才、全球2%頂尖科學家榜單、愛思唯爾中國高被引學者。 獲國家科技進步獎一等獎(排15)、教育部自然科學獎二等獎(排1)、中國交通運輸協會科技進步獎一等獎(排1)等;獲施普林格-自然“中國新發展獎”、中國智能交通協會科技領軍人才獎、中國交通運輸協會首屆青年獎、湖南省青年科技獎、寶鋼優秀教師獎等。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: a毛片在线看片免费 | 天天做人人爱夜夜爽2020毛片 | 小说区图片区亚洲 | 久草网在线 | 欧美亚洲网 | 超97在线观看精品国产 | 午夜免费 | 777精品久无码人妻蜜桃 | 亚洲学生妹高清av | 色图欧美色图 | 亚洲欧洲一区二区 | 成人久久 | 久久人人爽人人爽人人av东京热 | 国产成人91一区二区三区 | 国产99精品视频 | 亚洲欧美日韩天堂 | 欧美在线观看免费一区视频 | 99久久免费看精品国产一区 | 国产激情网 | 无码精品国产一区二区三区免费 | 国产区精品视频 | 国产成人精品久久一区二区三区 | a级毛片免费在线观看 | 亚洲国产福利精品一区二区 | 在线精品免费观看综合 | 玖玖影院在线观看 | 国产极品美女到高潮 | 色偷偷亚洲第一综合网 | 中国漂亮护士一级毛片 | 日日夜夜欧美 | 一区二区三区免费视频观看 | 久久久久久天天夜夜天天 | a级黄色毛片免费播放视频 a级黄色毛片视频 | 亚洲欧美综合另类 | 国产午夜精品久久久久免费视 | 亚洲不卡视频在线 | 91视频免费网站 | 特黄色大片 | 色94色欧美sute亚洲线路一 | 人妻无码一区二区三区四区 | 国产精品亚洲一区二区麻豆 |