掃一掃
關(guān)注中圖網(wǎng)
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
聲音簡史
分析學(xué)練習(xí):英文:第1部分:Part 1 版權(quán)信息
- ISBN:9787560392288
- 條形碼:9787560392288 ; 978-7-5603-9228-8
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
分析學(xué)練習(xí):英文:第1部分:Part 1 內(nèi)容簡介
本書是一部版權(quán)引進(jìn)自著名出版公司斯普林格出版公司的英文原版數(shù)學(xué)著作。這本書的目的是回顧分析學(xué)中的基本理論及其問題與解決方法.通過這些問題,讀者可以檢驗(yàn)自己對這些理論的理解程度,也可以發(fā)現(xiàn)這些理論的延伸和文獻(xiàn)中不規(guī)范的附加結(jié)果.本書的主題或多或少涵蓋了標(biāo)準(zhǔn)的本科高年級和研究生的分析課程的一些內(nèi)容。
分析學(xué)練習(xí):英文:第1部分:Part 1 目錄
1 Metric Spaces
1.1 Introduction
1.1.1 Basic Definitions and Notation
1.1.2 Sequences and Complete Metric Spaces
1.1.3 Topology of Metric Spaces
1.1.4 Baire Theorem
1.1.5 Continuous and Uniformly Continuous Functions
1.1.6 Completion of Metric Spaces: Equivalence of Metrics
1.1.7 Pointwise and Uniform Convergence of Maps
1.1.8 Compact Metric Spaces
1.1.9 Connectedness
1.1.10 Partitions of Unity
1.1.11 Products of Metric Spaces
1.1.12 Auxiliary Notions
1.2 Problems
1.3 Solutions
Bibliography
2 Topological Spaces
2.1 Introduction
2.1.1 Basic Definitions and Notation
2.1.2 Topological Basis and Subbasis
2.1.3 Nets
2.1.4 Continuous and Semicontinuous Functions
2.1.5 Open and Closed Maps: Homeomorphisms
2.1.6 Weak (or Initial) and Strong (or Final) Topologies
2.1.7 Compact Topological Spaces
2.1.8 Connectedness
2.1.9 Urysohn and Tietze Theorems
2.1.10 Paracompact and Baire Spaces
2.1.11 Polish and Souslin Sets
2.1.12 Michael Selection Theorem
2.1.13 The Space C(X;Y)
2.1.14 Elements of Algebraic Topology I: Homotopy
2.1.15 Elements of Algebraic Topology II: Homology
2.2 Problems
2.3 Solutions
Bibliography
3 Measure, Integral and Martingales
3.1 Introduction
3.1.1 Basic Definitions and Notation
3.1.2 Measures and Outer Measures
3.1.3 The Lebesgue Measure
3.1.4 Atoms and Nonatomic Measures
3.1.5 Product Measures
3.1.6 Lebesgue-Stieltjes Measures
3.1.7 Measurable Functions
3.1.8 The Lebesgue Integral
3.1.9 Convergence Theorems
3.1.10 LP-Spaces
3.1.11 Multiple Integrals: Change of Variables
3.1.12 Uniform Integrability: Modes of Convergence
3.1.13 Signed Measures
3.1.14 Radon-Nikodym Theorem
3.1.15 Maximal Function and Lyapunov Convexity Theorem
3.1.16 Conditional Expectation and Martingales
3.2 Problems
3.3 Solutions
Bibliography
4 Measures and Topology
4.1 Introduction
4.1.1 Borel and Baire a-Algebras
4.1.2 Regular and Radon Measures
4.1.3 Riesz Representation Theorem for Continuous Functions
4.1.4 Space of Probability Measures: Prohorov Theorem
4.1.5 Polish, Souslin and Borel Spaces
4.1.6 Measurable Multifunctions: Selection Theorems
4.1.7 Projection Theorems
4.1.8 Dual of LP(Ω) for 1 ≤ p ≤∞
4.1.9 Sequences of Measures: Weak Convergence in LP(Ω)
4.1.10 Covering Theorems
4.1.11 Lebesgue Differentiation Theorem
4.1.12 Bounded Variation and Absolutely Continuous Functions
4.1.13 Hausdorff Measures: Change of Variables
4.1.14 Caratheodory Functions
4.2 Problems
4.3 Solutions
Bibliography
5 Functional Analysis
5.1 Introduction
5.1.1 Locally Convex, Normed and Banach Spaces
5.1.2 Linear Operators: Quotient Spaces--Riesz Lemma
5.1.3 The Hahn-Banach Theorem
5.1.4 Adjoint Operators and Annihilators
5.1.5 The Three Basic Theorems of Linear Functional Analysis
5.1.6 The Weak Topology
5.1.7 The Weak* Topology
5.1.8 Reflexive Banach Spaces
5.1.9 Separable Banach Spaces
5.1.10 Uniformly Convex Spaces
5.1.11 Hilbert Spaces
5.1.12 Unbounded Linear Operators
5.1.13 Extremal Structure of Sets
5.1.14 Compact Operators
5.1.15 Spectral Theory
5.1.16 Differentiability and the Geometry of Banach Spaces
5.1.17 Best Approximation: Various Theorems for Banach Spaces
5.2 Problems
5.3 Solutions
Bibliography
Other Problem Books
List of Symbols
Index
編輯手記
展開全部
書友推薦
- >
新文學(xué)天穹兩巨星--魯迅與胡適/紅燭學(xué)術(shù)叢書(紅燭學(xué)術(shù)叢書)
- >
詩經(jīng)-先民的歌唱
- >
名家?guī)阕x魯迅:故事新編
- >
中國歷史的瞬間
- >
月亮與六便士
- >
【精裝繪本】畫給孩子的中國神話
- >
自卑與超越
- >
羅庸西南聯(lián)大授課錄
本類暢銷