国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
智能視感學-英文版

包郵 智能視感學-英文版

出版社:中國水利水電出版社出版時間:2012-08-01
開本: 16開 頁數: 304
讀者評分:5分1條評論
本類榜單:教材銷量榜
中 圖 價:¥26.3(6.7折) 定價  ¥39.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

智能視感學-英文版 版權信息

智能視感學-英文版 本書特色

《智能視感學(英文版)》作者張秀彬、曼蘇樂根據自己和博士、碩士生們的研究成果,結合多年從事本科生及研究生的教學經驗與體會整理出這本教材,將其定名為《智能視感學》?紤]到目前在該學科方向上尚缺乏較為淺顯易懂、又能形成體系的簡明教程,作者想做一次嘗試,希望能用一種較為通俗和深入淺出的方法來闡述智能視感的一些深奧知識,對初學者能夠起到入門和建立繼續深造的起點之作用。 這是一本基于圖像信息的非接觸式傳感理論的技術書。教材中所闡述的內容涉及到圖像識別、視差原理、計算幾何原理、計算機圖像圖形學,乃至人類對自然界認識的諸多先驗知識如何與視感檢測相結合的方法和技術問題。因此,本書是一本多學科交叉的較為前沿的大學研究型教材。

智能視感學-英文版 內容簡介

本書從計算機視感及其信號處理的基本概念與基礎理論出發,闡述了基于圖像信息的識別、理解與檢測技術原理與方法。本書根據作者多年來從事智能視感理論與技術研究成果,結合研究性本科與研究生教學特點編撰而成。全書分為基礎篇與應用篇兩大部分,其中,基礎篇系統地介紹了智能視感的基本原理、方法、關鍵技術及其算法;應用篇則由配合主要基礎理論和方法的應用技術實例所組成。全書遵循理論知識與實用技術的緊密結合、數學方法與實用效果的相互映證等編寫原則。本書可以作為檢測與控制、自動化、計算機、機器人及人工智能等專業的高年級本科生和研究生的教材,也可作為專業技術人員的參考工具書。

智能視感學-英文版 目錄

ForewordPreface Base articleChapter 1 Introduction 1.1 Overview 1.1.1 Concept about the Visual Perception 1.1.2 The Development of Visual Perception Technology 1.1.3 Classification of Visual Perception System 1.2 A Visual Perception Hardware-base 1.2.1 iImage Sensing 1.2.2 Image Acquisition 1.2.3 PC Hardware Requirements for VPS ExercisesChapter 2 Foundations of Image Processing 2.1 Basic Processing Methods for Gray Image 2.1.1 Spatial Domain Enhancement Algorithm 2.1.2 Frequency Domain Enhancement Algorithm 2.2 Edge Detection of Gray Image 2.2.1 Threshold Edge Detection 2.2.2 Gradient-based Edge Detection 2.Z.3 Laplacian Operator 2.2.4 Canny Edge Operator 2.2.5 Mathematical Morphological Method 2.2.6 Brief Description of Other Algorithms 2.3 Binarization Processing and Segmentation of Image 2.3.1 General Description 2.3.2 Histogram-based Valley-point Threshold Image Binarization 2.3.3 OTSU Algorithm 2.3.4 Minimum Error Method of Image Segmentation 2.4 Color Image Enhancement 2.4.1 Color Space and Its Transformation 2.4.2 Histogram Equalization of Color Levels in Color Image 2.5 Color Image Edge Detection 2.5.1 Color Image Edge Detection Based on Gradient Extreme Value 2.5.2 Practical Method for Color Image Edge Detection ExercisesChapter 3 Mathematical Model of the Camera 3.1 Geometric Transformations of Image Space 3.1.1 Homogeneous Coordinates 3.1.2 Orthogonal Transformation and Rigid Body Transformation 3.1.3 Similarity Transformation and Affine Transformation 3.1.4 Perspective Transformation 3.2 Image Coordinate System and Its Transformation 3.2.1 Image Coordinate System 3.2.2 Image Coordinate Transformation 3.3 Common Method of Calibration Camera Parameters 3.3.1 Step Calibration Method 3.3.2 Calibration Algorithm Based on More than One Free Plane 3.3.3 Non-linear Distortion Parameter Calibration Method ExercisesChapter 4 Visual Perception Identification Algorithms 4.1 Image Feature Extraction and Identification Algorithm 4.1.1 Decision Theory Approach 4.1.2 Statistical Classification Method 4.1.3 Feature Classification Discretion Similarity about the Image Recognition Process 4.2 Principal Component Analysis 4.2.1 Principal Component Analysis Principle 4.2.2 Kernel Principal Component Analysis 4.2.3 PCA-based Image Recognition 4.3 Support Vector Machines 4.3.1 Main Contents of Statistical Learning Theory 4.3.2 Classification-Support Vector Machine ~ 4.3.3 Solution to the Nonlinear Regression Problem 4.3.4 Algorithm of Support Vector Machine 4.3.5 Image Characteristics Identification Based on SVM 4.4 Moment Invariants and Normalized Moments of Inertia 4.4.1 Moment Theory 4.4.2 Normalized Moment of Inertia 4.5 Template Matching and Similarity 4.5.1 Spatial Domain Description of Template Matching 4.5.2 Frequency Domain Description of Template Matching 4.6 Object Recognition Based on Color Feature 4.6.1 Image Colorimetric Processing 4.6.2 Construction of Color-Pool 4.6.3 Object Recognition Based on Color 4.7 Image Fuzzy Recognition Method 4.7.1 Fuzzy Content Feature and Fuzzy Similarity Degree 4.7.2 Extraction of Fuzzy Structure 4.7.3 Fuzzy Synthesis Decision-making of Image Matching ExercisesChapter 5 Detection Principle of Visual Perception 5.1 Single View Geometry and Detection Principle of Monocular Visual Perception 5.1.1 Single Vision Coordinate System 5.1.2 Basic Algorithm for Single Vision Detection 5.1.3 Engineering Technology Based on Single View Geometry 5.2 Detection Principle of Binocular Visual Perception 5.2.1 Two-view Geometry and Detection of Binocular Perception 5.2.2 Epipolar Geometry Principle 5.2.3 Determination Method of Spatial Coordinates 5.2.4 Camera Calibration in Binocular Visual Perception System 5.3 Theoretical Basis for Multiple Visual Perception Detection 5.3.1 Tensor Geometry Principle 5.3.2 Geometric Properties of Three Visual Tensor 5.3.3 Operation of Three-visual Tensor 5.3.4 Constraint Matching Feature Points of Three-visual Tensor 5.3.5 Three-visual Tensor Restrict the Three Visual Restraint Feature Line' s Matching Exercises Application articleChapter 6 Practical Technology of Intelligent Visual Perception 6.1 Automatic Monitoring System and Method of Load Limitation of The Bridge 6.1.1 The Basic Composition of The System 6.1.2 System Algorithm 6.2 Intelligent Identification System for Billet Number 6.2.1 System Control Program 6.2.2 Recognition Algorithm 6.3 Verification of Banknotes-Sorting Based on Image Information 6.3.1 Preprocessing of the Banknotes Image 6.3.2 Distinction Between Old and New Banknotes 6.3.3 Distinction of the Denomination and Direction of the Banknotes 6.3.4 Banknotes Fineness Detection 6.4 Intelligent Collision Avoidance Technology of Vehicle 6.4.1 Basic Hardware Configuration 6.4.2 Road Obstacle Recognition Algorithm 6.4.3 Smart Algorithm of Anti-collision to Pedestrians 6.5 Intelligent Visual Perception Control of Traffic Lights 6.5.1 Overview 6.5.2 The Core Algorithm of Intelligent Visual Perception Control of Traffic Lights ExercisesAppendix Least Square and Common Algorithms in Visual Perception Detection I.1 Basic Idea of the Algorithm I.2 Common Least Square Algorithms in Visual Perception Detection I.2.1 Least Square of Linear System of Equations I.2.2 Least Square Solution of Nonlinear Homogeneous System of Equations Theory and Method of BAYES Decision II.1 Introduction II.2 BAYES Classification Decision Mode II.2.1 BAYES Classification of Minimum Error Rate II.2.2 BAYES Classification Decision of Minimum RiskIII Statistical Learning and VC-dimension Theorem III.1 Bounding Theory and VC-dimension Principle III.2 Generalized Capability Bounding III.3 Structural Risk Minimization Principle of InductionIV Optimality Conditions on Constrained Nonlinear Programming Problem IV.1 Kuhn-Tucker Condition IV.1.1 Gordon Lemma IV.1.2 Fritz John Theorem IV.1.3 Proof of the Kuhn-Tucker Condition IV.2 Karush-Kuhn-Tucker ConditionSubject IndexReferences
展開全部
商品評論(1條)
  • 主題:是一本雙語教學的中文翻譯書

    中國人寫的一本雙語教學的翻譯書,翻譯一般化,最好可以看看英文的原版相關資料

    2015/5/1 14:11:28
    讀者:wan***(購買過本書)
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 精品无人乱码一区二区三区 | 欧美人与动人物a级 | 亚洲欧美国产日本 | 黄色a级大片 | 日韩成视频在线精品 | 日韩中文字幕免费 | 黄色动漫网站在线观看 | 久久久亚洲精华液精华液精华液 | 亚洲欧美日韩高清 | 国产亚洲视频在线观看网址 | 精品国偷自产在线视频九色 | 少妇特殊按摩高潮惨叫无码 | 伊人网视频在线 | 69国产成人综合久久精品 | 久久婷婷久久一区二区三区 | 国产一区二区内射最近更新 | 国产成人无码午夜视频在线观看 | 午夜爱爱片| 亚洲精品αv一区二区三区 亚洲精品白浆高清久久久久久 | 久久男人av资源网站无码软件 | 天天看夜夜操 | 视频一区视频二区在线观看 | 国产特级黄色片 | 久久在线精品 | 九色视频在线观看免费 | 中文字幕一区二区三区人妻少妇 | 久久久久亚洲av无码专区桃色 | 亚洲av成人无码网站天堂网久久 | 国产精品免费看久久久无码 | 日韩爱爱 | 久操青青 | 熟妇高潮精品一区二区三区 | 欧美日韩精品一区二区在线播放 | 羞羞草视频 | 制服丝袜 自拍偷拍 | 精品无码国产自产野外拍在线 | 国产伦精品一区二区三区免.费 | 成人免费网站视频 | 美女裸体自慰在线观看 | 成 人 网 站 免 费 av | 亚洲日本一区二区一本一道 |