国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >>
長距離相互作用.隨機及分數維動力學

包郵 長距離相互作用.隨機及分數維動力學

出版社:高等教育出版社出版時間:2010-06-01
開本: 16開 頁數: 308
本類榜單:自然科學銷量榜
中 圖 價:¥55.4(8.1折) 定價  ¥68.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

長距離相互作用.隨機及分數維動力學 版權信息

長距離相互作用.隨機及分數維動力學 本書特色

《長距離相互作用、隨機及分數維動力學》:Nonlinear Physical Science focuses on the recent advances of fundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical science and nonlinear mathematics with engineering applications.

長距離相互作用.隨機及分數維動力學 內容簡介

in memory of dr. george zaslavsky, long-range interactions, stochasticity and fractional dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. the book is dedicated to dr. george zaslavsky, who was one of three founders of the theory of hamiltonian chaos. the book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. a comprehensive theory for brain dynamics is also presented. in addition, the complexity and stochasticity for soliton chains and turbulence are addressed.
the book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 目錄

1 fractional zaslavsky and henon discrete maps
vasily e. tarasov
1.1 introduction
1.2 fractional derivatives
1.2.1 fractional riemann-liouville derivatives
1.2.2 fractional caputo derivatives
1.2.3 fractional liouville derivatives
1.2.4 interpretation of equations with fractional derivatives.
1.2.5 discrete maps with memory
1.3 fractional zaslavsky maps
1.3.1 discrete chirikov and zaslavsky maps
1.3.2 fractional universal and zaslavsky map
1.3.3 kicked damped rotator map
1.3.4 fractional zaslavsky map from fractional differential equations
1.4 fractional h6non map
1.4.1 henon map
1.4.2 fractional henon map
1.5 fractional derivative in the kicked term and zaslavsky map
1.5.1 fractional equation and discrete map
1.5.2 examples
1.6 fractional derivative in the kicked damped term and generalizations of zaslavsky and henon maps
1.6.1 fractional equation and discrete map
1.6.2 fractional zaslavsky and henon maps
1.7 conclusion
references
2 self-similarity, stochasticity and fractionality
vladimir v uchaikin
2.1 introduction
2.1.1 ten years ago
2.1.2 two kinds of motion
2.1.3 dynamic self-similarity
2.1.4 stochastic self-similarity
2.1.5 self-similarity and stationarity
2.2 from brownian motion to levy motion
2.2.1 brownian motion
2.2.2 self-similar brownian motion in nonstationary nonhomogeneous environment
2.2.3 stable laws
2.2.4 discrete time levy motion
2.2.5 continuous time levy motion
2.2.6 fractional equations for continuous time levy motion
2.3 fractional brownian motion
2.3.1 differential brownian motion process
2.3.2 integral brownian motion process
2.3.3 fractional brownian motion
2.3.4 fractional gaussian noises
2.3.5 barnes and allan model
2.3.6 fractional levy motion
2.4 fractional poisson motion
2.4.1 renewal processes
2.4.2 self-similar renewal processes
2.4.3 three forms of fractal dust generator
2.4.4 nth arrival time distribution
2.4.5 fractional poisson distribution
2.5 fractional compound poisson process
2.5.1 compound poisson process
2.5.2 levy-poisson motion
2.5.3 fractional compound poisson motion
2.5.4 a link between solutions
2.5.5 fractional generalization of the levy motion
acknowledgments
appendix. fractional operators
references
3 long-range interactions and diluted networks
antonia ciani, duccio fanelli and stefano ruffo
3.1 long-range interactions
3.1.1 lack of additivity
3.1.2 equilibrium anomalies: ensemble inequivalence, negative specific heat and temperature jumps
3.1.3 non-equilibrium dynamical properties
3.1.4 quasi stationary states
3.1.5 physical examples
3.1.6 general remarks and outlook
3.2 hamiltonian mean field model: equilibrium and out-of- equilibrium features
3.2.1 the model
3.2.2 equilibrium statistical mechanics
3.2.3 on the emergence of quasi stationary states: non-
equilibrium dynamics
3.3 introducing dilution in the hamiltonian mean field model
3.3.1 hamiltonian mean field model on a diluted network
3.3.2 on equilibrium solution of diluted hamiltonian mean field
3.3.3 on quasi stationary states in presence of dilution
3.3.4 phase transition
3.4 conclusions
acknowledgments
references
4 metastability and transients in brain dynamics: problems and rigorous results
valentin s. afraimovich, mehmet k. muezzinoglu and
mikhail i. rabinovich
4.1 introduction: what we discuss and why now
4.1.1 dynamical modeling of cognition
4.1.2 brain imaging
4.1.3 dynamics of emotions
4.2 mental modes
4.2.1 state space
4.2.2 functional networks
4.2.3 emotion-cognition tandem
4.2.4 dynamical model of consciousness
4.3 competition--robustness and sensitivity
4.3.1 transients versus attractors in brain
4.3.2 cognitive variables
4.3.3 emotional variables
4.3.4 metastability and dynamical principles
4.3.5 winnerless competition--structural stability of transients
4.3.6 examples: competitive dynamics in sensory systems
4.3.7 stable heteroclinic channels
4.4 basic ecological model
4.4.1 the lotka-volterra system
4.4.2 stress and hysteresis
4.4.3 mood and cognition
4.4.4 intermittent heteroclinic channel
4.5 conclusion
acknowledgments
appendix 1
appendix 2
references
5 dynamics of soliton chains: from simple to complex and chaotic motions
konstantin a. gorshkov, lev a. ostrovsky and yury a. stepanyants
5.1 introduction
5.2 stable soliton lattices and a hierarchy of envelope solitons
5.3 chains of solitons within the framework of the gardner model
5.4 unstable soliton lattices and stochastisation
5.5 soliton stochastisation and strong wave turbulence in a resonator with external sinusoidal pumping
5.6 chains of two-dimensional solitons in positive-dispersion media
5.7 conclusion
few words in memory of george m. zaslavsky
references
6 what is control of turbulence in crossed fields?-don't even think of eliminating all vortexes!
dimitri volchenkov
6.1 introduction
6.2 stochastic theory of turbulence in crossed fields: vortexes of all sizes die out, but one
6.2.1 the method of renormalization group
6.2.2 phenomenology of fully developed isotropic turbulence
6.2.3 quantum field theory formulation of stochastic navier-stokes turbulence
6.2.4 analytical properties of feynman diagrams
6.2.5 ultraviolet renormalization and rg-equations
6.2.6 what do the rg representations sum?
6.2.7 stochastic magnetic hydrodynamics
6.2.8 renormalization group in magnetic hydrodynamics
6.2.9 critical dimensions in magnetic hydrodynamics
6.2.10 critical dimensions of composite operators in magnetic hydrodynamics
6.2.11 operators of the canonical dimension d = 2
6.2.12 vector operators of the canonical dimension d = 3
6.2.13 instability in magnetic hydrodynamics
6.2.14 long life to eddies of a preferable size
6.3 in search of lost stability
6.3.1 phenomenology of long-range turbulent transport in the scrape-off layer (sol) of thermonuclear reactors
6.3.2 stochastic models of turbulent transport in cross-field systems
6.3.3 iterative solutions in crossed fields
6.3.4 functional integral formulation of cross-field turbulent transport
6.3.5 large-scale instability of iterative solutions
6.3.6 turbulence stabilization by the poloidal electric drift
6.3.7 qualitative discrete time model of anomalous transport in the sol
6.4 conclusion
references
7 entropy and transport in billiards
m. courbage and s.m. saberi fathi
7.1 introduction
7.2 entropy
7.2.1 entropy in the lorentz gas
7.2.2 some dynamical properties of the barrier billiard model
7.3 transport
7.3.1 transport in lorentz gas
7.3.2 transport in the barrier billiard
7.4 concluding remarks
references
index
展開全部

長距離相互作用.隨機及分數維動力學 節選

《長距離相互作用、隨機及分數維動力學》內容簡介:In memory of Dr. George Zaslavsky, Long-range Interactions, Stochasticity and Fractional Dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

長距離相互作用.隨機及分數維動力學 相關資料

插圖:Note that the continuous limit of discrete systems with power-law long-range interactions gives differential equations with derivatives of non-integer orders with respect to coordinates (Tarasov and Zaslavsky, 2006; Tarasov, 2006). Fractional differentiation with respect to time is characterized by long-term memory effects that correspond to intrinsic dissipative processes in the physical systems. The memory effects to discrete maps mean that their present state evolution depends on all past states. The discrete maps with memory are considered in the papers (Fulinski and Kleczkowski, 1987;Fick et al., 1991; Giona, 1991; Hartwich and Fick, 1993; Gallas, 1993; Stanislavsky,2006; Tarasov and Zaslavsky, 2008; Tarasov, 2009; Edelman and Tarasov, 2009).The interesting question is a connection of fractional equations of motion and thediscrete maps with memory. This derivation is realized for universal and standard maps in (Tarasov and Zaslavsky, 2008; Tarasov, 2009). It is important to derive discrete maps with memory from equations of motion with fractional derivatives. It was shown (Zaslavsky et al., 2006) that perturbed by aperiodic force, the nonlinear system with fractional derivative exhibits a new type of chaotic motion called the fractional chaotic attractor.

長距離相互作用.隨機及分數維動力學 作者簡介

編者:羅朝俊 (墨西哥)阿弗萊諾維奇(Valentin Afraimovich) 叢書主編:(瑞典)伊布拉基莫夫Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville,USA.Dr. Valentin Afraimovich is a Proiessor at San Luis Potosi University, Mexico.

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 99精品久久精品一区二区 | 在线无码午夜福利高潮视频 | 成人午夜高潮a∨猛片 | 久久综合99 | 青青青看免费视频在线 | 最好看2019高清中文字幕视频 | 四虎永久在线精品免费网址 | 九九热线有精品视频99 | 久青草国产视频 | 欧洲美熟女乱又伦av | 国产对白真实伦视频在线 | 久久精品免费视频观看 | 日日狠狠久久偷偷四色综合免费 | 欧美在线一区二区三区 | 国产精品视频第一区二区 | 亚洲一区二区三区av天堂 | 亚洲人成色在线观看 | 毛片高清 | 亚洲成 人a影院青久在线观看 | 极品粉嫩小泬无遮挡20p | 国产极品久久 | 国内精品美女久久久久 | 欧美爱爱视频网站 | 欧美日韩精品在线 | 午夜影院一级片 | 国产短裙黑色丝袜在线观看下 | 亚洲日韩中文字幕在线播放 | 国产片一级毛片视频 | 99精品高清视频一区二区 | 日韩成人国产精品视频 | 国产凸凹视频一区二区 | 丰满少妇熟女高潮流白浆 | 中文毛片无遮挡播放免费 | a亚洲 | 国产成人无码精品午夜福利a | 国产精品国产三级国产av剧情 | 亚洲福利视频网址 | 中文字幕第一页国产 | 老太脱裤子让老头玩xxxxx | 特级片在线观看 | 一区二区三区在线 | 欧 |