掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
Scikit-Learn與TensorFlow機器學習實用指南 版權信息
- ISBN:9787564173715
- 條形碼:9787564173715 ; 978-7-5641-7371-5
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Scikit-Learn與TensorFlow機器學習實用指南 本書特色
TensorFlow是一個采用數據流圖(data flow graphs),用于數值計算的開源軟件庫。節點(Nodes)在圖中表示數學操作,圖中的線(edges)則表示在節點間相互聯系的多維數據數組,即張量(tensor)。它靈活的架構讓你可以在多種平臺上展開計算,例如臺式計算機中的一個或多個CPU(或GPU),服務器,移動設備等等。本書講述TensorFlow相關知識。
Scikit-Learn與TensorFlow機器學習實用指南 內容簡介
本書很好地介紹了利用神經網絡解決問題的相關理論與實踐。它涵蓋了構建高效應用涉及的關鍵點以及理解新技術所需的背景知識。
Scikit-Learn與TensorFlow機器學習實用指南 目錄
PrefacePart I. The Fundamentals of Machine Learning 1. The Machine Learning Landscape What Is Machine Learning
Why Use Machine Learning
Types of Machine Learning Systems Supervised/Unsupervised Learning Batch and Online Learning Instance-Based Versus Model-Based Learning Main Challenges of Machine Learning Insufficient Quantity of Training Data Nonrepresentative Training Data Poor-Quality Data Irrelevant Features Overfitting the Training Data Underfitting the Training Data tepping Back Testing and Validating Exercises 2. End-to-End Machine Learning Project Working with Real Data Look at the Big Picture Frame the Problem Select a Performance Measure Check the Assumptions Get the Data Create the Workspace Download the Data Take a Quick Look at the Data Structure Create a Test Set Discover and Visualize the Data to Gain Insights Visualizing Geographical Data Looking for Correlations Experimenting with Attribute Combinations Prepare the Data for Machine Learning Algorithms Data Cleaning Handling Text and Categorical Attributes Custom Transformers Feature Scaling Transformation Pipelines Select and Train a Model Training and Evaluating on the Training Set Better Evaluation Using Cross-Validation Fine-Tune Your Model Grid Search Randomized Search Ensemble Methods Analyze the Best Models and Their Errors Evaluate Your System on the Test Set Launch, Monitor, and Maintain Your System Try It Out!
Exercises 3. Classification MNIST Training a Binary Classifier Performance Measures Measuring Accuracy Using Cross-Validation Confusion Matrix Precision and Recall Precision/Recall Tradeoff The ROC Curve Multiclass Classification Error Analysis Multilabel Classification Multioutput Classification……
Part II. Neural Networks and Deep LearningA. Exercise SolutionsB. Machine Learning Project ChecklistC. SVM Dual ProblemD. AutodiffE. Other Popular ANN ArchitecturesIndex
展開全部
書友推薦
- >
唐代進士錄
- >
我與地壇
- >
中國歷史的瞬間
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
小考拉的故事-套裝共3冊
- >
姑媽的寶刀
- >
詩經-先民的歌唱
本類暢銷