国产第1页_91在线亚洲_中文字幕成人_99久久久久久_五月宗合网_久久久久国产一区二区三区四区

讀書月攻略拿走直接抄!
歡迎光臨中圖網 請 | 注冊
> >
深入理解計算機系統-第2版-英文版

包郵 深入理解計算機系統-第2版-英文版

作者:布萊恩特
出版社:機械工業出版社出版時間:2011-01-01
所屬叢書: 經典原版書庫
開本: 16開 頁數: 1077
中 圖 價:¥62.7(4.9折) 定價  ¥128.0 登錄后可看到會員價
暫時缺貨 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

深入理解計算機系統-第2版-英文版 版權信息

  • ISBN:9787111326311
  • 條形碼:9787111326311 ; 978-7-111-32631-1
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

深入理解計算機系統-第2版-英文版 本書特色

“這是我所看過的介紹有關計算機系統核心內容的好教材之一,視角獨特,內容豐富,系統性強,將高層的程序設計和中間層次的存儲管理、編譯優化、鏈接等內容,以及底層的計算機硬件多個方面有機結合起來,深刻揭示了計算機硬件和軟件之間的內在聯系。它是一本值得計算機專業人員好好閱讀的教科書! ——袁春 風南京大學 &n

深入理解計算機系統-第2版-英文版 內容簡介

《深入理解計算機系統(英文版·第2版)》是將計算機軟件和硬件理論結合講述的經典教程,內容覆蓋計算機導論、體系結構和處理器設計等多門課程。《深入理解計算機系統(英文版·第2版)》的*大優點是為程序員描述計算機系統的實現細節,通過描述程序是如何映射到系統上,以及程序是如何執行的,使讀者更好地理解程序的行為為什么是這樣的,以及造成效率低下的原因。相對于第1版,本版主要是反映了過去十年間硬件技術和編譯器的變化,具體更新如下:對系統的介紹(特別是實際使用部分)做了增加和修改。例如,既保持了原有的針對32位系統的說明,又增加了對64位系統的描述。增加了很多關于由算術運算溢出以及緩沖區溢出造成安全漏洞的內容。更詳細講述了處理器對異常的發現和處理。描述了基于IntelCorei7處理器的存儲器層次結構,還增加了固態硬盤的內容。強調并發性.增加了關于并發性一般原則的內容。

深入理解計算機系統-第2版-英文版 目錄

出版者的話3 前言節選 4 Preface 7 About the Authors 21 1 A Tour of Computer Systems 35 1.1 Information Is Bits + Context 37 1.2 Programs Are Translated by Other Programs into Different Forms 38 1.3 It Pays to Understand How Compilation Systems Work 40 1.4 Processors Read and Interpret Instructions Stored in Memory 41 1.4.1 Hardware Organization of a System 41 1.4.2 Running the hello Program 44 1.5 Caches Matter 46 1.6 Storage Devices Form a Hierarchy 47 1.7 The Operating System Manages the Hardware 48 1.7.1 Processes 50 1.7.2 Threads 51 1.7.3 Virtual Memory 51 1.7.4 Files 53 1.8 Systems Communicate with Other Systems Using Networks 54 1.9 Important Themes 55 1.9.1 Concurrency and Parallelism 55 1.9.2 The Importance of Abstractions in Computer Systems 58 1.10 Summary 59 Bibliographic Notes 60 Part I Program Structure and Execution Representing and Manipulating Information 63 2.1 Information Storage 67 2.1.1 Hexadecimal Notation 68 2.1.2 Words 72 2.1.3 Data Sizes 72 2.1.4 Addressing and Byte Ordering 73 2.1.5 Representing Strings 80 2.1.6 Representing Code 81 2.1.7 Introduction to Boolean Algebra 82 2.1.8 Bit-Level Operations in C 85 2.1.9 Logical Operations in C 88 2.1.10 Shift Operations in C 88 2.2 Integer Representations 90 2.2.1 Integral Data Types 91 2.2.2 Unsigned Encodings 92 2.2.3 Two's-Complement Encodings 94 2.2.4 Conversions Between Signed and Unsigned 99 2.2.5 Signed vs. Unsigned in C 103 2.2.6 Expanding the Bit Representation of a Number 105 2.2.7 Truncating Numbers 109 2.2.8 Advice on Signed vs. Unsigned 110 2.3 Integer Arithmetic 113 2.3.1 Unsigned Addition 113 2.3.2 Two's-Complement Addition 117 2.3.3 Two's-Complement Negation 121 2.3.4 Unsigned Multiplication 122 2.3.5 Two's-Complement Multiplication 123 2.3.6 Multiplying by Constants 126 2.3.7 Dividing by Powers of Two 129 2.3.8 Final Thoughts on Integer Arithmetic 132 2.4 Floating Point 133 2.4.1 Fractional Binary Numbers 134 2.4.2 IEEE Floating-Point Representation 137 2.4.3 Example Numbers 139 2.4.4 Rounding 144 2.4.5 Floating-Point Operations 147 2.4.6 Floating Point in C 148 2.5 Summary 152 Bibliographic Notes 153 Homework Problems 153 Solutions to Practice Problems 168 3 Machine-Level Representation of Programs 187 3.1 A Historical Perspective 190 3.2 Program Encodings 193 3.2.1 Machine-Level Code 194 3.2.2 Code Examples 196 3.2.3 Notes on Formatting 199 3.3 Data Formats 201 3.4 Accessing Information 202 3.4.1 Operand Specifiers 203 3.4.2 Data Movement Instructions 205 3.4.3 Data Movement Example 208 3.5 Arithmetic and Logical Operations 211 3.5.1 Load Effective Address 211 3.5.2 Unary and Binary Operations 212 3.5.3 Shift Operations 213 3.5.4 Discussion 214 3.5.5 Special Arithmetic Operations 216 3.6 Control 219 3.6.1 Condition Codes 219 3.6.2 Accessing the Condition Codes 221 3.6.3 Jump Instructions and Their Encodings 223 3.6.4 Translating Conditional Branches 227 3.6.5 Loops 231 3.6.6 Conditional Move Instructions 240 3.6.7 Switch Statements 247 3.7 Procedures 253 3.7.1 Stack Frame Structure 253 3.7.2 Transferring Control 255 3.7.3 Register Usage Conventions 257 3.7.4 Procedure Example 258 3.7.5 Recursive Procedures 263 3.8 Array Allocation and Access 266 3.8.1 Basic Principles 266 3.8.2 Pointer Arithmetic 267 3.8.3 Nested Arrays 269 3.8.4 Fixed-Size Arrays 271 3.8.5 Variable-Size Arrays 272 3.9 Heterogeneous Data Structures 275 3.9.1 Structures 275 3.9.2 Unions 278 3.9.3 Data Alignment 282 3.10 Putting It Together: Understanding Pointers 286 3.11 Life in the Real World: Using the gdb Debugger 288 3.12 Out-of-Bounds Memory References and Buffer Overflow 290 3.12.1 Thwarting Buffer Overflow Attacks 295 3.13 x86-64: Extending IA32 to 64 Bits 301 3.13.1 History and Motivation for x86-64 302 3.13.2 An Overview of x86-64 304 3.13.3 Accessing Information 307 3.13.4 Control 313 3.13.5 Data Structures 324 3.13.6 Concluding Observations about x86-64 325 3.14 Machine-Level Representations of Floating-Point Programs 326 3.15 Summary 327 Bibliographic Notes 328 Homework Problems 328 Solutions to Practice Problems 342 4 Processor Architecture 367 4.1 The Y86 Instruction Set Architecture 370 4.1.1 Programmer-Visible State 370 4.1.2 Y86 Instructions 371 4.1.3 Instruction Encoding 373 4.1.4 Y86 Exceptions 378 4.1.5 Y86 Programs 379 4.1.6 Some Y86 Instruction Details 384 4.2 Logic Design and the Hardware Control Language HCL 386 4.2.1 Logic Gates 387 4.2.2 Combinational Circuits and HCL Boolean Expressions 388 4.2.3 Word-Level Combinational Circuits and HCL Integer Expressions 389 4.2.4 Set Membership 394 4.2.5 Memory and Clocking 395 4.3 Sequential Y86 Implementations 398 4.3.1 Organizing Processing into Stages 398 4.3.2 SEQ Hardware Structure 409 4.3.3 SEQ Timing 413 4.3.4 SEQ Stage Implementations 417 4.4 General Principles of Pipelining 425 4.4.1 Computational Pipelines 426 4.4.2 A Detailed Look at Pipeline Operation 427 4.4.3 Limitations of Pipelining 428 4.4.4 Pipelining a System with Feedback 432 4.5 Pipelined Y86 Implementations 434 4.5.1 SEQ+: Rearranging the Computation Stages 434 4.5.2 Inserting Pipeline Registers 435 4.5.3 Rearranging and Relabeling Signals 439 4.5.4 Next PC Prediction 440 4.5.5 Pipeline Hazards 442 4.5.6 Avoiding Data Hazards by Stalling 447 4.5.7 Avoiding Data Hazards by Forwarding 449 4.5.8 Load/Use Data Hazards 452 4.5.9 Exception Handling 454 4.5.10 PIPE Stage Implementations 457 4.5.11 Pipeline Control Logic 465 4.5.12 Performance Analysis 478 4.5.13 Unfinished Business 480 4.6 Summary 483 4.6.1 Y86 Simulators 484 Bibliographic Notes 485 Homework Problems 485 Solutions to Practice Problems 491 5 Optimizing Program Performance 507 5.1 Capabilities and Limitations of Optimizing Compilers 510 5.2 Expressing Program Performance 514 5.3 Program Example 516 5.4 Eliminating Loop Inefficiencies 520 5.5 Reducing Procedure Calls 524 5.6 Eliminating Unneeded Memory References 525 5.7 Understanding Modern Processors 530 5.7.1 Overall Operation 531 5.7.2 Functional Unit Performance 534 5.7.3 An Abstract Model of Processor Operation 536 5.8 Loop Unrolling 543 5.9 Enhancing Parallelism 547 5.9.1 Multiple Accumulators 548 5.9.2 Reassociation Transformation 552 5.10 Summary of Results for Optimizing Combining Code 558 5.11 Some Limiting Factors 559 5.11.1 Register Spilling 559 5.11.2 Branch Prediction and Misprediction Penalties 560 5.12 Understanding Memory Performance 565 5.12.1 Load Performance 565 5.12.2 Store Performance 566 5.13 Life in the Real World: Performance Improvement Techniques 573 5.14 Identifying and Eliminating Performance Bottlenecks 574 5.14.1 Program Profiling 574 5.14.2 Using a Profiler to Guide Optimization 576 5.14.3 Amdahl's Law 579 5.15 Summary 581 Bibliographic Notes 582 Homework Problems 583 Solutions to Practice Problems 586 6 The Memory Hierarchy 593 6.1 Storage Technologies 595 6.1.1 Random-Access Memory 595 6.1.2 Disk Storage 604 6.1.3 Solid State Disks 615 6.1.4 Storage Technology Trends 617 6.2 Locality 620 6.2.1 Locality of References to Program Data 621 6.2.2 Locality of Instruction Fetches 622 6.2.3 Summary of Locality 623 6.3 The Memory Hierarchy 625 6.3.1 Caching in the Memory Hierarchy 626 6.3.2 Summary of Memory Hierarchy Concepts 629 6.4 Cache Memories 630 6.4.1 Generic Cache Memory Organization 631 6.4.2 Direct-Mapped Caches 633 6.4.3 Set Associative Caches 640 6.4.4 Fully Associative Caches 642 6.4.5 Issues with Writes 645 6.4.6 Anatomy of a Real Cache Hierarchy 646 6.4.7 Performance Impact of Cache Parameters 648 6.5 Writing Cache-friendly Code 649 6.6 Putting It Together: The Impact of Caches on Program Performance 654 6.6.1 The Memory Mountain 655 6.6.2 Rearranging Loops to Increase Spatial Locality 659 6.6.3 Exploiting Locality in Your Programs 663 6.7 Summary 663 Bibliographic Notes 664 Homework Problems 665 Solutions to Practice Problems 676 29 Part II Running Programs on a System 7 Linking 687 7.1 Compiler Drivers 689 7.2 Static Linking 691 7.3 Object Files 691 7.4 Relocatable Object Files 692 7.5 Symbols and Symbol Tables 694 7.6 Symbol Resolution 697 7.6.1 How Linkers Resolve Multiply Defined Global Symbols 698 7.6.2 Linking with Static Libraries 701 7.6.3 How Linkers Use Static Libraries to Resolve References 704 7.7 Relocation 706 7.7.1 Relocation Entries 706 7.7.2 Relocating Symbol References 707 7.8 Executable Object Files 712 7.9 Loading Executable Object Files 713 7.10 Dynamic Linking with Shared Libraries 715 7.11 Loading and Linking Shared Libraries from Applications 717 7.12 Position-Independent Code (PIC) 721 7.13 Tools for Manipulating Object Files 724 7.14 Summary 725 Bibliographic Notes 725 Homework Problems 726 Solutions to Practice Problems 732 8 Exceptional Control Flow 735 8.1 Exceptions 737 8.1.1 Exception Handling 738 8.1.2 Classes of Exceptions 740 8.1.3 Exceptions in Linux/IA32 Systems 742 8.2 Processes 746 8.2.1 Logical Control Flow 746 8.2.2 Concurrent Flows 747 8.2.3 Private Address Space 748 8.2.4 User and Kernel Modes 748 8.2.5 Context Switches 750 8.3 System Call Error Handling 751 8.4 Process Control 752 8.4.1 Obtaining Process IDs 753 8.4.2 Creating and Terminating Processes 753 8.4.3 Reaping Child Processes 757 8.4.4 Putting Processes to Sleep 763 8.4.5 Loading and Running Programs 764 8.4.6 Using fork and execve to Run Programs 767 8.5 Signals 770 8.5.1 Signal Terminology 772 8.5.2 Sending Signals 773 8.5.3 Receiving Signals 776 8.5.4 Signal Handling Issues 779 8.5.5 Portable Signal Handling 786 8.5.6 Explicitly Blocking and Unblocking Signals 787 8.5.7 Synchronizing Flows to Avoid Nasty Concurrency Bugs 789 8.6 Nonlocal Jumps 793 8.7 Tools for Manipulating Processes 796 8.8 Summary 797 Bibliographic Notes 797 Homework Problems 798 Solutions to Practice Problems 805 9 Virtual Memory 809 9.1 Physical and Virtual Addressing 811 9.2 Address Spaces 812 9.3 VM as a Tool for Caching 813 9.3.1 DRAM Cache Organization 814 9.3.2 Page Tables 814 9.3.3 Page Hits 816 9.3.4 Page Faults 816 9.3.5 Allocating Pages 817 9.3.6 Locality to the Rescue Again 818 9.4 VM as a Tool for Memory Management 819 9.5 VM as a Tool for Memory Protection 820 9.6 Address Translation 821 9.6.1 Integrating Caches and VM 825 9.6.2 Speeding up Address Translation with a TLB 825 9.6.3 Multi-Level Page Tables 826 9.6.4 Putting It Together: End-to-end Address Translation 828 9.7 Case Study: The Intel Core i7/Linux Memory System 833 9.7.1 Core i7 Address Translation 834 9.7.2 Linux Virtual Memory System 837 9.8 Memory Mapping 841 9.8.1 Shared Objects Revisited 841 9.8.2 The fork Function Revisited 843 9.8.3 The execve Function Revisited 844 9.8.4 User-level Memory Mapping with the mmap Function 844 9.9 Dynamic Memory Allocation 846 9.9.1 The malloc and free Functions 848 9.9.2 Why Dynamic Memory Allocation? 850 9.9.3 Allocator Requirements and Goals 851 9.9.4 Fragmentation 853 9.9.5 Implementation Issues 854 9.9.6 Implicit Free Lists 854 9.9.7 Placing Allocated Blocks 856 9.9.8 Splitting Free Blocks 857 9.9.9 Getting Additional Heap Memory 857 9.9.10 Coalescing Free Blocks 858 9.9.11 Coalescing with Boundary Tags 858 9.9.12 Putting It Together: Implementing a Simple Allocator 861 9.9.13 Explicit Free Lists 869 9.9.14 Segregated Free Lists 870 9.10 Garbage Collection 872 9.10.1 Garbage Collector Basics 873 9.10.2 Mark&Sweep Garbage Collectors 874 9.10.3 Conservative Mark&Sweep for C Programs 876 9.11 Common Memory-Related Bugs in C Programs 877 9.11.1 Dereferencing Bad Pointers 877 9.11.2 Reading Uninitialized Memory 877 9.11.3 Allowing Stack Buffer Overflows 878 9.11.4 Assuming that Pointers and the Objects They Point to Are the Same Size 878 9.11.5 Making Off-by-One Errors 879 9.11.6 Referencing a Pointer Instead of the Object It Points to 879 9.11.7 Misunderstanding Pointer Arithmetic 880 9.11.8 Referencing Nonexistent Variables 880 9.11.9 Referencing Data in Free Heap Blocks 881 9.11.10 Introducing Memory Leaks 881 9.12 Summary 882 Bibliographic Notes 882 Homework Problems 883 Solutions to Practice Problems 887 Part III Interaction and Communication Between Programs 10 System-Level I/O 895 10.1 Unix I/O 896 10.2 Opening and Closing Files 897 10.3 Reading and Writing Files 899 10.4 Robust Reading and Writing with the Rio Package 901 10.4.1 Rio Unbuffered Input and Output Functions 901 10.4.2 Rio Buffered Input Functions 902 10.5 Reading File Metadata 907 10.6 Sharing Files 909 10.7 I/O Redirection 911 10.8 Standard I/O 913 10.9 Putting It Together: Which I/O Functions Should I Use? 914 10.10 Summary 915 Bibliographic Notes 916 Homework Problems 916 Solutions to Practice Problems 917 11 Network Programming 919 11.1 The Client-Server Programming Model 920 11.2 Networks 921 11.3 The Global IP Internet 925 11.3.1 IP Addresses 927 11.3.2 Internet Domain Names 929 11.3.3 Internet Connections 933 11.4 The Sockets Interface 934 11.4.1 Socket Address Structures 935 11.4.2 The socket Function 936 11.4.3 The connect Function 937 11.4.4 The open_clientfd Function 937 11.4.5 The bind Function 938 11.4.6 The listen Function 939 11.4.7 The open_listenfd Function 939 11.4.8 The accept Function 941 11.4.9 Example Echo Client and Server 942 11.5 Web Servers 945 11.5.1 Web Basics 945 11.5.2 Web Content 946 11.5.3 HTTP Transactions 948 11.5.4 Serving Dynamic Content 950 11.6 Putting It Together: The Tiny Web Server 953 11.7 Summary 961 Bibliographic Notes 962 Homework Problems 962 Solutions to Practice Problems 963 12 Concurrent Programming 967 12.1 Concurrent Programming with Processes 969 12.1.1 A Concurrent Server Based on Processes 970 12.1.2 Pros and Cons of Processes 971 12.2 Concurrent Programming with I/O Multiplexing 973 12.2.1 A Concurrent Event-Driven Server Based on I/O Multiplexing 976 12.2.2 Pros and Cons of I/O Multiplexing 980 12.3 Concurrent Programming with Threads 981 12.3.1 Thread Execution Model 982 12.3.2 Posix Threads 982 12.3.3 Creating Threads 984 12.3.4 Terminating Threads 984 12.3.5 Reaping Terminated Threads 985 12.3.6 Detaching Threads 985 12.3.7 Initializing Threads 986 12.3.8 A Concurrent Server Based on Threads 986 12.4 Shared Variables in Threaded Programs 988 12.4.1 Threads Memory Model 989 12.4.2 Mapping Variables to Memory 990 12.4.3 Shared Variables 990 12.5 Synchronizing Threads with Semaphores 991 12.5.1 Progress Graphs 994 12.5.2 Semaphores 997 12.5.3 Using Semaphores for Mutual Exclusion 998 12.5.4 Using Semaphores to Schedule Shared Resources 1000 12.5.5 Putting It Together: A Concurrent Server Based on Prethreading 1004 12.6 Using Threads for Parallelism 1008 12.7 Other Concurrency Issues 1013 12.7.1 Thread Safety 1013 12.7.2 Reentrancy 1014 12.7.3 Using Existing Library Functions in Threaded Programs 1016 12.7.4 Races 1017 12.7.5 Deadlocks 1019 12.8 Summary 1022 Bibliographic Notes 1023 Homework Problems 1023 Solutions to Practice Problems 1028 A Error Handling 1033 A.1 Error Handling in Unix Systems 1034 A.2 Error-Handling Wrappers 1035 References 1039 Index 1045
展開全部

深入理解計算機系統-第2版-英文版 作者簡介

布萊恩特(Randal E.Bryant),1973年獲得密歇根大學學士學位,隨即就讀麻省理工學院的研究生院,并在1981年獲得計算機博士學位。從1984年至今一直任教于卡內基-梅隆大學,現在是卡內基-梅隆大學計算機科學學院院長、教授,同時受邀任教于工學院電子與計算機工程系。他還是ACM院士、IEEE院士和美國國家工程院院士。其研究成果獲得過數項大獎,其中包括Semiconductor Researh Corporation頒發的兩個發明榮譽獎和一個技術成就獎,ACM頒發的Kanellakis理論與實踐獎,還有IEEE頒發的W.R.G.Baker獎、Emmanuel Piere獎和Phil Kaufman獎。 奧哈拉倫(David R.O'Hallaron),擁有弗吉尼亞大學計算機科學博士學位,現為Intel匹茲堡實驗室主任,卡內基-梅隆大學計算機科學和電子與計算機工程副教授,他曾獲得卡內基-梅隆大學計算機科學學院頒發的Herbert Simon杰出教學獎,并同Quake項目中其他成員一起獲得了高性能計算領域中的最高國際獎項——Gordon Bell獎。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 亚洲国产精品一区二区久久 | 奇米777狠狠色噜噜狠狠狠 | 一级人与动毛片免费播放 | 免费观看激色视频网站 | 成人高清在线视频 | 2017天天爽夜夜爽精品视频 | 人妻哺乳奶头奶水 | 免费国产成人午夜在线观看 | 日韩视频在线观看一区二区 | 日本大片免费观看视频 | 黄瓜成视频片无限次数 | 丰满熟妇被猛烈进入高清片 | 中文字幕第二页精品一区 | 男ji大巴进入女人的视频 | 极品丝袜高跟91白沙发在线 | 亚洲一区二区三区在线网站 | 亚洲国产片在线观看 | 少妇高潮一区二区三区99 | 亚洲av日韩综合一区在线观看 | 黑色丝袜美女被视频网站 | 亚洲色图图片 | 亚洲乱码中文字幕综合 | 色成人综合 | 九九热精品在线视频 | 婷婷久久综合九色综合绿巨人 | 超级碰碰青草久热国产 | 日韩专区第一页 | 欧美一区二区三区男人的天堂 | 欧美a级网站 | 好了av四色综合无码 | 亚洲 图片 小说 欧美 另类 | 成在线人免费视频一区二区 | 精品久久国产字幕高潮 | 亚洲国产成人无码av在线播放 | 精品无码黑人又粗又大又长 | 日本三级黄在线观看 | 性做久久久久久 | 自偷自偷自亚洲永久 | 国产福利在线观看你懂的 | 在线视频 日本 | 欧美一级片在线视频 |